The Longest Call

This video debuted at the 2019 Hall of Fame Celebration

Sponsored By


With Additional Support from

In 1977, NASA launched a robot spacecraft called Voyager 1 (pictured right) into space. Its mission was to fly by Jupiter and Saturn to give us our first close-up view of these gas giants. Five years later, NASA declared the mission a success.

But some 40 years later, Voyager 1 was still going strong, becoming the first object made by human hands to reach interstellar space. It was also just about to lose contact with Earth. To maintain that link, Voyager needed to fire thrusters that would turn it toward Earth, billions of kilometers away. But those thrusters hadn’t been fired for 37 years. Would they work? Would Voyager even be able to hear the command to fire them?

Engineers at NASA’s Jet Propulsion Laboratory studied the problem and then, on a November morning, sent their command. Thirty-nine hours passed. And then came the return signal. The thrusters had done their job, and Voyager was back on line.

The Deep Space Network

This moment was made possible by something called the Deep Space Network. Built in the Sixties by NASA, it’s a collection of giant radio antennas in California, Spain and Australia, connected to JPL in California. When the first human set foot on the Moon in 1969, it was the Deep Space Network that brought his words to Earth. 

How is it possible to make a call millions or billions of miles across space? It takes massive antennas moving on giant motorized bases, and amazingly sensitive electronics. When a Voyager signal reaches Earth, it is billions of times weaker than the battery in your digital watch. But the network receives it, amplifies it and makes sense of it. And when the antennas transmit, they do it with massive power.

NASA runs deep space missions every day of the year. They measure temperatures on the Moon, peer inside Jupiter, study comets and search for black holes. The Deep Space Network keeps them communicating with Earth. And a company called Peraton delivers the communication that keeps the scientific data flowing. Peraton provides technology solutions and support to America’s civil and defense space missions. More than 300 of its people operate, maintain and repair the network’s antennas and electronics. They play an integral role in mission planning, from pre-launch to on-orbit, and make sure every component is working. When you command a billion-dollar, one-of-a-kind machine millions of miles away, failure is not an option.

Avoiding Collisions Far from Home

A NASA satellite called MAVEN has been in orbit around Mars, studying its atmosphere since 2015. Its orbit swings down close to the planet and then back out into space again. Along the way, it crosses the orbits of Mars’ two moons, Phobos and Deimos. In 2017, JPL realized there was a good chance that MAVEN and Phobos (pictured left) would cross paths at the same time – smashing the spacecraft into dust.

One week before that predicted crash, the Deep Space Network went into action. Commands went to MAVEN to burn its rocket motor and boost its speed. By the time the data finished whizzing across the Deep Space Network, JPL engineers knew their spacecraft would pass by Phobos with just about 2 minutes to spare. Just another day of mastering the complexities of space and time.

The last time human beings flew beyond Earth’s orbit was in 1972. But every day, hundreds of people at Peraton help thousands of others to bring the wonders of space to Earth, expanding our knowledge of the galaxy’s past and giving us a window into our own future.

Peraton provides innovative, reliable solutions to the nation’s most sensitive and mission-critical programs and systems. As a trusted provider of highly differentiated space, intelligence, cyber, defense, homeland security, and communications capabilities, Peraton is a critical partner to the Intelligence Community, Department of Defense, and select federal agencies and commercial entities. Headquartered in Herndon, Virginia, the company employs more than 3,000 people across the U.S. and Canada.

Photo Credits: NASA - image is public domain, Banco de Imágines Geológicas - used under Wikimedia Creative Commons Attribution 2.0 Generic license